谁能介绍一下电厂循环流化床锅炉工作原理啊!!还有他的优点?和平常室燃炉的区别?

由图3.1.1可见,随着气流速度的增加,固体颗粒分别出现固定床、鼓泡流化床、湍流流化床、快速流化床和气力输送状态。循环流化床的上升段通常运行在快速流化床状态下。 

快速流态化流体动力特性的形成对循环流化床是至关重要的,此时,固体物料被速度大于单颗物料的终端速度的气流所流化,以颗粒团的形式上下运动,产生高度的返混,颗粘团向各个方向运功,而且不断形成和解体。在这种流体状态下,气流还可携带一定数量的大颗粒,尽管其终端速度远大于截面平均气速。这种气固运动方式中,存在较大的气固两相速度差,即相对速度。 

(1) 不再有鼓泡流化床那样清晰的界面,固体颗粒充满整个上升段空间;

(2) 有强烈的物料返混,颗粒团不断形成和解体,并且向各个方向运动;

(3) 颗粒与气体之间的相对速度大,且与床层空隙率和颗粒循环流量有关;

(4) 运行流化速度为鼓泡流化床的2~3倍;

(5) 床层压降随流化速度和颗粒的质量流量而变化; 

循环流化床锅炉可分为两个部分。第一部分由炉膛(快速流化床)、气固物料分离设备、固体物料再循环设备和外置热交换器(有些循环流化床锅炉没有该设备)等组成,上述部件形成一个固体物料循环回路。第二部分为对流烟道,布置有局部过热器、再热器、省煤器和空气预热器等,与常规火炬燃烧锅炉相近。 

.低温动力控制燃烧

循环流化床燃烧是一种在炉内使高速运动的烟气与其所携带的湍流扰动极强的固体颗粒密切接触,并具有大量颗粒返混的流态化燃烧反应过程;同时,在炉外将绝大部分高温的固体颗粒捕集,并将它们送回炉内再次参与燃烧过程,反复循环地组织燃烧。显然,燃料在炉膛内燃烧的时间延长了。在这种燃烧方式下,炉内温度水平因受脱硫最佳温度限制,一般850℃左右。这样的温度远低于普通煤粉炉中的温度水平,并低于一般煤的灰熔点,这就免去了灰熔化带来的种种烦恼。 

这种“低温燃烧”方式好处甚多,炉内结渣及碱金属析出均比煤粉料炉中要改善很多,对灰特性的敏感性减低,也无须很大空间去使高温灰冷却下来,氮氧化物生成量低,可于炉内组织廉价而高效的脱硫工艺等等。从燃烧反应动力学角度看,循环流化床锅炉内的燃烧反应控制在动力燃烧区(或过渡区)内、由于循环流化床锅炉内相对来说温度不高,并有大量固体颗粒的强烈混合,这种情况下的燃烧速率主要取决于化学反应速率,也就是决定于温度水平,而物理因素不再是控制燃烧速率的主导因素。循环流化床锅炉内燃料的燃尽度很高,通常,性能良好的循环流化床锅炉燃烧效率可达98%~99%以上。

.高速度、高浓度、高通量的固体物料流态化循环过程

循环流化床锅炉内的固体物料(包括燃料、残炭、灰、脱硫刘和惰性床料等)经历了由炉膛、分离器和返料装置所组成的外循环。同时在前面介绍快速流态化的特点时,我们也介绍了炉膛内固体物料的内循环,因此循环流化床锅炉内的物料参与了外循环和内循环两种循环运动。整个燃烧过程以及脱硫过程都是在这两种形式的循环运动的动态过程中逐步完成的。

高强度的热量、质量和动量传递过程

在循环流化床锅炉中,大量的固体物料在强烈湍流下通过炉膛,通过人为操作可改变物料循环量,并可改变炉内物料的分布规律,以适应不同的燃烧工况。在这种组织方式下,炉内的热量、质量和动量传递过程是十分强烈的,这就使整个炉膛高度的温度分布均匀。运行实践也充分证实了这一点。 

1.燃料适应性广 

2.燃烧效率高 

3.高效脱硫 

4.氮氧化物(NOx)排放低 

5. 其他污染物排放低

循环流化床锅炉的其他污染物如CO、HCl、HF等的排放也很低。 

6.燃烧强度高,炉膛截面积小

炉膛单位截面积的热负荷高是循环流化床锅炉的主要优点之一。循环流化床锅炉的截面热负荷约为3.5~4.5MW/m2,接近或高于煤粉炉。同样热负荷下鼓泡流化床锅炉需要的炉膛截面积要比循环流化床锅炉大2~3倍。 

7.给煤点少

8.燃料预处理系统简单

9.易于实现灰渣综合利用

10.负荷调节范围大,负荷调节快

11.床内不布置埋管受热面

12.投资和运行费用适中  

你说的与室燃炉的区别主要是炉膛不同,和燃煤颗料的大小不同

cfb的优点当然很多了!

(1)燃料适应性广

(2)燃烧效率高

(3)高效脱硫、氮氧化物(nox)排放低

(4)燃烧强度高

(5)负荷调节范围大,负荷调节快

(6)易于实现灰渣综合利用

(7)燃料预处理系统简单

具体解释如下:

循环流化床燃烧技术是80年代从沸腾燃烧技术发展而来的一种新型的、公认的最具发展前景的“洁净”煤燃烧技术。由于具有燃料燃烧条件好、燃料适应性广、燃烧效率高、热效率高、负荷调节性能好、低温清洁燃烧、环保性能佳,灰渣能够得到综合利用等诸多优点,循环流化床锅炉的优越性越来越被广泛认可,并得到迅速发展。目前循环流化床锅炉正向大型化发展。循环流化床锅炉是80年代发展起来的一项新型燃烧技术,是在第一代沸腾床锅炉炉的基础上克服其飞灰量大、飞灰含碳量高、燃烧效率低、热效率低、埋管受热面及炉墙磨损严重、脱硫剂利用率低等固有缺点而开发的。循环流化床锅炉是通过提高沸腾炉流化床的气流速度,增加床层上部悬浮段自由颗粒的浓度,加强悬浮段的燃烧及传热,提高锅炉的蒸发率。同时在炉膛内或炉膛出口布置有气固分离器,以分离和收集烟气中高浓度的细灰,再使用返料器把细灰送入流化床循环燃烧,使烟气中的细灰在循环燃烧过程中实现完全燃烧,脱硫剂循环反映。以达到降低锅炉热损失,提高锅炉热效率,及取得理想脱硫效果的目的。

循环流化床锅炉的优点

循环流化床锅炉独特的流体动力特性和结构使其具有许多独特的优点。

(1)燃料适应性广

由于循环床炉内燃料着火、燃烧条件好,因而可以燃烧高灰、高硫、高水分、低热值、低挥发份的烟煤、无烟煤、褐煤、泥煤、煤矸石、油页岩、木材与稻壳等生物废料直至层燃锅炉排渣及造气炉渣等劣质燃料。且煤种多变和各种燃料混合物均能适应。

在循环流化床锅炉中按重量计,燃料仅占床料的1~3%,其余是不可燃的固体颗粒,如脱硫剂、灰渣等。因此,加到床中的新鲜煤颗粒被相当于一个“大蓄热池”的灼热灰渣颗粒所包围。由于床内混合剧烈,这些灼热的灰渣颗粒实际上起到了无穷的“理想拱”的作用,把煤料加热到着火温度而开始燃烧。在这个加热过程中,所吸收的热量只占床层总热容量的千分之几,因而对床层温度影响很小,而煤颗粒的燃烧,又释放出热量,从而能使床层保持一定的温度水平,这也是流化床一般着火没有困难,并且煤种适应性很广的原因所在。

(2)燃烧效率高

循环流化床锅炉的燃烧效率要比鼓泡流化床锅炉高,通常在98~99%范围内,可与煤粉锅炉相媲美。循环流化床锅炉燃烧效率高是因为有下述特点:气固混合良好;燃烧速率高;其次是飞灰及燃料多次循环燃烧。

(3)高效脱硫、氮氧化物(nox)排放低

由于炉内温度水平对脱硫有利,且脱硫剂多次循环,炉内扰动很大,与烟气接触时间长,这样循环流化床燃烧与鼓泡流化床燃烧相比脱硫性能大大改善。当钙硫比为1.5~2.0时,脱硫率可达85~90%。而鼓泡流化床锅炉,脱硫效率要达到85~90%,钙硫比要达到3~4,钙的消耗量大一倍。氮氧化物排放低是循环流化床锅炉另一个非常吸引人的特点。运行经验表明,循环流化床锅炉的nox排放范围为50~150ppm或40~120mg/mj。循环流化床锅炉nox排放低是由于以下两个原因:一是低温燃烧,此时空气中的氮一般不会生成nox;二是分段燃烧,抑制燃料中的氮转化为nox,并使部分已生成的nox得到还原。与煤粉燃烧锅炉相比,不需采用尾部脱硫脱硝装置,投资和运行费用比配脱硫装置的煤粉炉低15~20%。

(4)燃烧强度高

炉膛单位截面积的热负荷高是循环流化床锅炉的另一主要优点。其截面热负荷约为3.5~4.5mw/m2,接近或高于煤粉炉。同样热负荷下鼓泡流化床锅炉需要的炉膛截面积要比循环流化床锅炉大2~3倍。

(5)负荷调节范围大,负荷调节快

当负荷变化时,只需调节给煤量(调节流化床料层高度)、空气量和物料循环量,不必像鼓泡流化床锅炉那样采用分床压火技术。也不象煤粉锅炉那样,低负荷时要用油助燃,维持稳定燃烧。一般而言,循环流化床锅炉的负荷调节比可达(3~4):1,可以在40~50%的低负荷下稳定运行。负荷调节速率也很快,一般可达每分钟4%。

(6)易于实现灰渣综合利用

循环流化床燃烧过程属于低温燃烧,同时炉内优良的燃尽条件使得锅炉的灰渣含炭量低(含炭量小于1%),属于低温烧透,易于实现灰渣的综合利用,如作为水泥掺和料或做建筑材料。同时低温烧透也有利于灰渣中稀有金属的提取。

(7)燃料预处理系统简单

循环流化床锅炉的给煤粒度一般小于13mm,因此与煤粉锅炉相比,燃料的制备破碎系统大为简化.电厂的燃煤锅炉一般是煤粉炉曾做过流化床和煤粉炉的调研,这里主要把优缺点说了一下,你自己参考下吧(一)循环流化床锅炉相比煤粉锅炉的优点:

1)对燃料适应性特别好。循环流化床锅炉通过分离器及返料阀组成飞灰再循环系统,煤质的燃烧产生的飞灰循环量大小的改变可调节燃烧室内的吸热量及床料温度,只要燃料燃烧产生的热值大于把燃料本身及燃烧所需空气加热到稳定温度(850~950℃)所需的热量,这种煤就可在流化床内稳定燃烧,因此,各种煤几乎都可在流化床锅炉中燃烧,用来烧各种劣质燃料最好不过。对于燃料煤质量供给不稳定的企业是一种比较好选择。

而煤粉炉对煤质的要求较高,当燃煤与设计煤种存在较大差异时容易出现炉膛喷燃器、过热器结焦,给煤机断煤等现象,使锅炉无法正常运行,煤粉炉对煤种适应性差的现象比较明显。

2)燃料系统比较简单。流化床锅炉是适合于燃用宽筛分燃料(煤粒度要求为粒度范围0-10mm,50%切割粒径d50=2mm),燃料的制备破碎系统大为简化。所以,循环流化床锅炉本体造价高于同容量的煤粉炉,省去了复杂的制粉系统,整体投资含土建仍低于煤粉炉。

3)燃烧效率高。对常规的煤粉锅炉,若煤种达不到设计值,效率一般可达到85-95%,而循环流化床锅炉采用飞灰再循环系统,燃烧效率可达到95-99%。

4)负荷的调节范围宽,调节性能好。煤粉锅炉的负荷调节范围通常在70~110%,在低负荷时煤粉炉需投油枪进行助燃;而循环流化床锅炉由于炉内有大量床料,蓄热能力强,采用了飞灰再循环系统,调节范围要比煤粉炉宽得多,一般为30~110%,负荷调节速率可达(5~10)b-mcr/min。故循环流化床特别适应于热电联产、热负荷变化较大的供热锅炉或调峰机组锅炉使用。

5)燃烧污染物排放低。向循环流化床锅炉内加入脱硫剂(石灰石或白云石粉),可以脱去燃烧过程中产生的二氧化硫(so2)。根据燃料中含硫量决定加入的石灰石剂量,在ca/s摩尔比=2~2.5时,脱硫效率可达90%。和煤粉炉比较(煤粉炉利用湿法脱硫的成本:利用国外技术平均费用1300~1500元/kw,国内技术平均费用1000元/kw),流化床锅炉在烧高硫煤时有较大的成本优势。流化床锅炉最佳的燃烧温度在850~950℃,在这个范围适合脱硫反应,nox生成量明显减少,排放浓度在100~200ppm,低于煤粉炉的500~600ppm,循环流化床锅炉的其它污染物排放如co、hcl、hf的排放也低于煤粉炉;对煤粉炉而言,要从烟气中脱除nox,造价比煤粉炉脱硫的费用还要大得多。循环流化床锅炉在so2、nox的排放量完全能达到国家环境排放标准,使它与煤粉锅炉在环境排放方面竞争有绝对的优势。

6)燃烧热强度大,炉内传热能力强。由于循环流化床锅炉采用飞灰再循环系统,燃烧热强度比较高,截面热负荷可达3~8mw/m2,接近或高于煤粉炉,,炉膛容积热负荷为1.5~2mw/m3是煤粉炉的8~10倍。流化床炉内传热主要是上升烟气和物料与受热面的对流换热和辐射换热 ,炉膛内气固两相混合物对水冷壁的传热系数比煤粉锅炉炉膛的辐射传热系数大得多。与煤粉炉相比较,可大幅节省受热面的金属耗量。

7)给煤点数量少,布置简单。循环流化床锅炉横向混合特性较好,给煤点较煤粉炉少,如220t/h只有4个给煤点,给煤点的减少简化了给煤装置的布置,使给煤点不易结焦,运行可靠。

8)易于实现灰渣的综合利用。流化床的底渣含碳量一般为1~3%,飞灰含碳量 4~15%,流化床锅炉最佳的燃烧温度在850~950℃,与煤粉炉相比较属中低温燃烧,产生的灰渣不会软化和黏结,活性较好,可用作制造水泥的掺和料或者建筑材料,综合利用前景广阔。

(二)循环流化床锅炉相比煤粉炉的缺点:

1)循环流化床锅炉风机电耗大、烟风道阻力高。相对于煤粉锅炉,流化床锅炉一次风机、二次风机、流化风机压头高;流化床独有的布风板装置和飞灰再循环燃烧系统使送风系统的阻力远大于煤粉锅炉送风的阻力,煤粉炉送风机风压一般在2kpa以下,而流化床锅炉的送风机风压一般运行在10kpa以上,电耗大,噪音高,震动大。一般循环流化床锅炉用电比率比煤粉炉至少高4~5%以上。

2)锅炉部件的磨损较严重。由于流化床锅炉内的物料成高浓度、高风速的特点,故锅炉部件的磨损比较严重。虽然采取了耐火耐磨浇注料处理、喷涂处理、密稀相区让管等防磨措施处理,但实际运行中循环流化床炉膛内的受热面磨损速度仍远大于煤粉锅炉。密稀相区交界处的管壁磨损处理修复要比煤粉炉难度大得多。

3)耐火耐磨层磨损、开裂和脱落是流化床锅炉比较棘手的问题。流化床锅炉使用耐火材料的部位和数量比煤粉炉要多许多。而由于耐火耐磨材料选择不当,或者施工工艺不合理,或者烘炉和点火启动中温度控制不当,升温、降温过快,导致耐火材料中蒸发水汽不能及时排出,或者热应力过大,造成耐火材料内衬破裂和脱落。密相区内耐火材料的的脱落将破坏正常的床料流化工况,造成床料结渣。分离器、料腿及返料阀系统耐火材料的的脱落将堵塞返料系统结渣,物料循环破坏,循环流化床锅炉变成鼓泡流化床锅炉,蒸发量无法维持,被迫停炉。而在煤粉锅炉中不存在这个问题,因煤粉锅炉冷灰斗耐火材料的脱落及结渣而影响停炉的事故很少见。

4)点火启动时间长。循环流化床锅炉点火启动时间除受汽包升温速率的影响外,还受到耐火防磨层内衬材料温升和能承受的热应力限制。温升过快,耐火防磨层内衬材料热应力将超过允许热应力出现开裂。所以,对循环流化床锅炉点火启动时间和升温速率有严格要求。汽冷旋风分离器的循环流化床锅炉从冷态启动到带满负荷的时间一般控制在6~8小时。而煤粉锅炉因无大面积的耐火防磨内衬材料,点火启动只考虑汽包升温速率,点火时间相对较短,冷态在5~6小时就可达到设计负荷。

5)循环流化床锅炉对燃料适应性广,但对燃煤粒径要求严格。循环流化床锅炉燃煤粒径一般在0~10mm之间,平均粒径在2.5~3.5mm之间,如果达不到这个要求,将带来运行中的不良后果,锅炉达不到设计蒸发量,主汽温度难以保证,灰渣含碳量高,受热面磨损严重。

6)n2o生成量较煤粉炉高。与高温煤粉炉燃烧过程相比较,循环流化床锅炉燃烧温度较低,nox(no、no2等氮氧化物的总称)生成量较少,但n2o的生成量较大,,它俗称“笑气”,是一种强温室效应气体,对大气臭氧层具有破坏作用,导致紫外线直接照射到地球上,引发皮肤癌。目前国际上对“笑气”排放比较关注。

7)循环流化床锅炉尾部受热面的磨损比煤粉炉大。循环流化床锅炉的飞灰份额比煤粉炉小,但飞灰粒径比煤粉炉大得多,在运行中如果分离器效果差或烟气流速大,将导致过热器、省煤器等受热面磨损严重。

8)循环流化床锅炉的核心部件风帽较易磨损。风帽通风孔之间的横向冲刷,及高速床料对风帽的磨损容易引起风室漏渣、流化效果恶化、结焦、沟流现象,影响锅炉负荷。而风帽的维修异常困难,需要先清除布风板上几十吨的惰性床料,然后又回装,检修周期长,劳动力需求大。煤粉炉就不存在这个问题。

9)运行维护费用较高,运行周期短。循环流化床锅炉本体,包括耐火防磨层,金属受热面和风帽磨损严重,导致流化床日常维修费用较煤粉炉高。由于本体及辅机事故比煤粉炉多,循环流化床锅炉连续累计运行时间比煤粉炉短,煤粉炉年运行时间可以达到8000h/y以上,而流化床几乎不可能,运行周期能达到100天就不错了。对适应化工系统安全、稳定、长周期运行的要求有一定的差距。

10)循环流化床锅炉实现自动化控制难度大。循环流化床锅炉的燃烧系统较煤粉炉复杂得多,对床压的控制、床温的控制、返料系统风量的控制,都是煤粉锅炉所没有的,加之炉内磨损严重,压力、温度测点连续投运可靠性无法保证,自动化控制较煤粉炉难得多,风烟系统自动控制能达到单冲量自动控制就不错了,而煤粉炉通过调试可以达到燃烧系统自动控制,减少了操作人员的工作量。这是循环流化床锅炉所不具备的。综上说述,循环流化床锅炉在运行中的问题要较煤粉锅炉多,连续运行小时数要比煤粉炉短,在化工行业选型中,如果燃料煤质供应可靠,燃料含硫量低可考虑煤粉锅炉,它具有燃烧稳定,,辅机技术成熟自动化程度高,易于操作,运行周期长,维修量相对较小的优点,适合化工系统长周期安全稳定运行的特点。反之,若立足于燃烧劣质煤,供煤质量不稳定,且煤质含硫量高,环境排放要求苛刻,属于供热、调峰、热电联产类的供热形式,良好的脱硫成本,对各种煤质良好的适应性,考虑循环流化床锅炉是好选择。循环流化床锅炉原理

1、低温的动力控制燃烧:

循环流化床燃烧是一种在炉内使高速运动的烟气与所携带的紊流扰动极强的固体颗粒密切接触,并具有大量颗粒返混的流化态燃烧反应过程,同时,在炉外将决大部分高温的固体颗粒捕集,并将它们送回炉内再次参与燃烧过程,反复循环地组织燃烧,延长了燃料在炉内燃烧的时间。在这种燃烧方式下,既可以实现较高温度燃烧也可以实现中温燃烧,由于添加了脱硫剂,炉内温度水平受脱硫最佳的限制,一般为850~900左右。

2、高速度、高浓度、高通量的固体物料流态循环过程:

循环流化床锅炉内的固体物料(燃料、残碳、灰、脱流剂和惰性床料等)经历了由炉膛、分离器和返料装置所组成的外循环,同时有快速流态化的特点,在炉内固体物料存在内循环,因此,循环流化床锅炉内的物料参与了外循环和内循环两种循环运动。整个燃烧过程以及脱硫过程都是在这两种形式的循环运动过程中逐步完成的。

3、 高强度的热量、质量和动量传递过程

在循环流化床锅炉中,大量的固体物料在强烈的紊流下通过炉膛通过人为操作可改变物料循环量以适应不同的工况

循环流化床锅炉吧

循环流化床锅炉到底怎么样啊?

循环流化床是近年来在国际上发展起来的新一代高效、低污染清洁燃烧技术,具有许多其它燃烧方式所没有的优点:

1) 由于循环流化床锅炉属于低温燃烧,因此氮氧化物排放远低于煤粉炉,仅为120ppm左右。并可实现燃烧中直接脱硫,脱硫效率高且技术设备简单和经济,其脱硫的初投资及运行费用远低于煤粉炉加FGD,是目前我国在经济上可承受的燃煤污染控制技术;

2) 燃料适应性广且燃烧效率高,特别适合于低热值劣质煤;

3) 排出的灰渣活性好,易于实现综合利用。

4) 负荷调节范围大,负荷可降到满负荷的30%左右。流化床锅炉技术最早始于德国的煤气发生炉(1922)。二次大战期间,在美国成功的开发了流化床石油催裂装置以生产航空汽油。七十年代初,西德鲁奇公司首先发展了三氢氧化铝焙烧的循环流化床工艺,1979年芬兰奥斯龙公司开发的第一台20t/h循环流化床锅炉投入运转,很快西德鲁奇的84MW循环流化床锅炉(1982)、美国开发的25t/h锅炉(1981)相继投入试运。另外瑞典亦加入开发的行列。在工业(热点联产)用循环流化床锅炉成功投入商业运行的基础上,向大型化发电锅炉方向发展的步伐十分迅速。1986年鲁奇的270t/h循环流化床锅炉交付正式使用,1988年美国的420t/h锅炉进入顺利运转。1990年鲁奇的499t/h锅炉投运,至今已成功投运多年。此后,更有发电170MW(加拿大,1994)和250MW(法国,1995)相继投入运行。目前,世界上差不多所有的大型锅炉厂都介入了循环流化床锅炉开发的浪潮。仅仅二十年时间,从第一台小锅炉发展至发电250MW数量级的电站锅炉,对于发展像锅炉这样的动力设备而言,这个速度是相当快的。从这里可以看到,这项燃煤新技术迅速发展的势头和各国电力部门对它的兴趣和期待,都是非常高的。

2、目前开发的循环流化床锅炉的结构形式有多种多样

目前开发的循环流化床锅炉的结构形式有多种多样,但就构成循环流化床燃烧的基本环节和工作过程的组织原理来说,则基本上是相似的。燃煤和空气进入一个流态化燃烧室(炉膛),发生掺混和燃烧,夹带有大量细颗粒物料的烟气在炉膛出口以后的气固分离器中把所夹带的固体颗粒分离下来,烟气进入尾部受热面,而被分离器收集下来的物料通过返料器被送回主燃烧室循环再燃。为使燃烧过程维持在850-900℃的稳定范围内,需要把约50%燃烧释热通过在炉膛内受热面传给锅炉水汽系统。对于典型的奥斯龙和鲁奇的循环流化床锅炉而言,它们都采用了紧接燃烧室的旋风分离器作为系物料的分离收集装置,所不同的仅是奥斯龙的只将受热面布置在炉膛上部,而鲁奇则在外部换热器内又分别布置有受热面。当然,为了发挥各自的特点所采用的特性参数(如流化速度等)和具体结构是有所不同的,但各个制造厂家都努力发挥各自的特长和经验,使各自的系统转化为可供使用的流化床锅炉设备,但在性能和市场占有上,仍有较大的差别。到目前为止,以奥斯龙和鲁奇两种炉型经验和应用最多。

目前,循环流化床燃烧系统已经发展到一个相当高的水平,燃烧效率高达98~99%。借助添加石灰石进行炉内脱硫,效果可达90%以上,负荷调节能力可达1:3到1:4,在系统完备的条件下,可实现负荷调节速率约5% /分。其实际运行的工作可靠性超过90%,在投资和运行费用方面,也要较一般的带有尾气脱硫装置的煤粉炉便宜得多。

二、国内发展状况

1、1984年底我国建成第一台2.8MW的循环流化床锅炉热态实验装置(实为一台热水锅炉)

我国自1964年以来,在燃用劣质煤的鼓泡流化床方面有相当发展,目前全国有数千台,积累了不少的经验,为国民经济的发展做出了一定的贡献。但容量大多都是10t/h以下的小锅炉,最大的两台是130t/h。他们一般也能正常运行,但普遍存在燃烧效率低,使用可靠性较差等问题。在应用流化床燃烧与环保控制、二氧化硫排放方面,尚无实际运行的例子。在流化床锅炉燃烧的研究和开发方面,就总体性能而言我国起步较晚,与国外相比落后较多。“六五”期间,中科院工程热物理研究所参加承担了国家科委组织的“煤的流化床燃烧技术研究”的专项课题,和“六五”攻关中劣质煤流化床燃烧的关键技术研究和基础专项课题,率先在国内开展了循环流化床锅炉燃烧技术的科研和开发工作。1984年底,该所在北京中关村建成我国第一台2.8MW的循环流化床锅炉热态实验装置(实为一台热水锅炉)。1985年该所循环流化床燃烧技术通过国家鉴定。

2、1987年,我国第一台外循环流化床锅炉在开封锅炉厂诞生

1985年该所与开封锅炉厂(河南开封得胜锅炉股份有限公司)合作开发10t/h外循环流化床蒸汽锅炉,于1988年4月通过部级鉴定,填补了国内空白。1989年中科院热物理研究所又和济南锅炉厂合作,开发出35T/H外循环流化床发电锅炉,这是我国第一台发电用循环流化床锅炉。1992年与杭州锅炉厂合作开发出75T/H循环流化电站锅炉,锅炉中首次使用高温百叶窗分离装置。而后该所与武汉锅炉厂合作研制开发出220T/H循环流化床电站锅炉。

与此同时国内各大学及科研院所,如清华大学,哈尔滨工业大学,华中理工大学,浙江大学,东北电力学院,东南大学,西安热工所等单位,都在研制开发各种型号各种流派的循环流化床锅炉,其中开发较早及运行较多的是中科院工程热物理研究所的外循环流化床工业及电站锅炉系列。占国内各种循环流化床锅炉运行台份的一半以上。

循环流化床锅炉由于它具有高效、节能、低污染等诸多优点,所以发展非常迅猛。随着越来越多的锅炉制造厂、高等院校、科研院所的投入,相信不久的将来,循环流化床锅炉一定会得到更加飞速的发展。

如果有兴趣可以去我的qq空间,那里更详细一些,我的qq号码 1158667261循环流化床锅炉锅炉是高效低污染的设备,适应煤种广泛,调负荷能力强,自动化水平高,锅炉热效率高,生成氮氧化物少,(干法/湿法)脱硫效率高投入方便。现在不论是自备热电厂还是上网电厂大部分都用循环流化床锅炉。qq372773710锅炉工程师由于循环流化床锅炉的操作运行与其它炉型不同,运行中除了按《运行规程》对锅炉水位、汽压、汽温进行监视和调整外,还必须对锅炉的燃烧进行调整。

(1)床温的控制:

运行应加强床温监视,炉温过高时结焦,过低时息火,一般控制在850℃-950℃左右,如烧无烟煤,为使燃料燃烧完全,可提高炉温,控制在950-1050℃(应低于煤的变形温度100-200℃)最低不低于800℃,否则很难维持稳定运行,一旦断煤很容易造成灭火。烧烟煤时炉温控制在900-950℃,如烧高硫烟煤需进行炉内脱硫,床温控制在850-870℃,最多不超过900℃,否则降低石灰石的利用率,当炉温升高时,开大一次风门。炉温低时,关一次风门,超过1000℃时,停煤、加风;低于800℃时,应加煤减风。但风量最小也要保持最低流化状态。若温度继续下降,立即停炉,查明原因再启动。炉温的控制是调整一次风量、给煤量和循环灰量来实现的。常规下主要调整给煤量。

流化床温高或床温低引起的原因和控制方法:

1、床温升高一般由下列因素引起

a、煤质变好,热值升高,烟气氧量降低(一般控制过热器后正常运行时烟气含氧量3-5%),表明煤量过多,应减少给煤量。

b、粒度较大的煤,集中给入炉内,造成密相区燃烧份额增加,引起床温升高。从含氧量看不出变化,用增加一次风量,减少二次风量的方法,控制床温。

c、由于没有及时放渣,料层加厚,造成一次风量减少引起床温升高。应及时放渣保持料层厚度在一定范围内。

2、床温降低一般由下列原因引起:

a、煤质差、热值降低,烟气氧量增加,应增加给煤提升床温。

b、燃料粒度小。煤仓一部分较小的煤集中给入炉内,细煤粒在密相区停留时间较短造成密相区燃烧份额减少,而床温降低,正确的调整应减少一次风量,增加二次风量,不应增加煤量,以免引起炉膛上部空间燃烧份额增多,造成返料器超温结焦。

c、氧量指标不变,床温缓慢降低,而且整个燃烧系统都在降低,锅炉负荷不变。这是由于循环物料增多,增加了受热面积的换热系数,造成炉温降低,应放掉一些循环灰,使炉温回升。

(2)料层厚度的控制

循环流化床没有鼓泡床那样明显的流化层界面,但仍有密相区和稀相区之分,料层厚度是指密相区内静止料层厚度,对同一煤种,一定的料层差压对应着一定的料层厚度。料层薄,对锅炉稳定运行不利,因炉料的保有量少,入出的炉渣可燃物含量也高。若料层太厚,增加了料层阻力,虽然锅炉运行稳定,炉渣可燃物含量低,但增加了风机的电耗。所以为了经济运行,料层差压控制在7000-8000pa之间。运行中料层差压超过此值时可以通过放炉渣来调整,放渣的原则是少放、勤放,最好能连续少量放,一次放渣量太多,影响锅炉的稳定运行、出力和效率。

(3)炉膛(悬浮段)物料浓度的控制

循环流化床与沸腾床明显的区别在于悬浮段物料浓度不同两者相差到几十倍到几百倍。循环流化床锅炉出力大小,主要是由悬浮段物料浓度所决定。对同一煤种一定的物料浓度,对应着一定的出力。对于不同煤种,同样出力下,挥发份高的煤比挥发份低的煤物料浓度低。一定的物料浓度,对应着一定炉膛差压值,控制炉膛差压值应可以控制锅炉的出力,正常运行中炉膛差压值维持在700-900pa,若差值太大,通过放循环灰来调整,放灰原则少放、勤放。

(4)二次风的投入和调整二次风的原则

一次风控制炉温,二次风控制总风量。约在60%负荷时开始投入二次风,在一次风满足炉温需要的前提下,当总风量不足时(过热器后氧气含量低于3-5%时)可逐渐开启二次风,随着锅炉负荷的增加,二次风量逐渐增大。

(5)运行中最低运行风量的控制

最低运行风量是保证和限制流化床低负荷运行的下限风量,风量过低不能保证正常流化,造成炉床结焦。在冷炉点火时,应

使一次风量较快的超过最低风量,以免引起低温结焦。低负荷运行时,不能低于最低运行风量,一般情况下,最低运行风量可在冷态实验时确定,一般以风门的开度来标定。

(6)返料器的控制

返料器是循环流化床锅炉的一个主要部件。它工作的好坏直接影响着锅炉的经济运行,首先要保证返料器有稳定流化气源,启动时调整好返料器的流化风量。在运行中,要加强监视和控制返料器床温,防止超温结焦,一般返料器处的床温最高不宜大于950℃,当返料器床温过高时,应减少给煤量和负荷,查明原因后消除。

(7)锅炉出力的调整

当增加负荷时,应当先少量增加一次风量和二次风量,再少量加煤,如此反复调节,直到所需的出力。增负荷率一般控制在2%-5%/分之间。当减负荷时,应先减少给煤量,再适当减少一次风量和二次风量,并慢慢放掉一部分循环灰,以降低炉膛差压,如此反复操作。直到所需出力为止。降负荷时,由于给煤量、一、二次风量可以很快减少,循环灰可以很快放掉,在紧急情况下,减负荷率可达到20%/分,但一般控制在5-10%/分。

(8)锅炉压火和再启动

锅炉需要暂时停炉运行时,可以进行压火操作。具体操作步骤如下:

1、加大给煤量,使炉温升高到930-950℃后停止给煤,待炉温下降至850℃时,迅速关闭一次风门,立即停一次、二次风机和引风机,迅速关闭各风机调节风门及其他风门,同时关闭返料风门,放掉循环灰。

2、需要长时间压火时,风机停运后,应迅速打开炉门均匀地加一层约10-30mm厚的烟煤,并关炉门、看火孔以防冷风窜入炉膛,使料层热量散失。压火时间可达24小时。压火时间长短取决于静止料层温度降低的速度。料层较厚,压火前炉温较高压火时间就长。只要料层温度不低于600℃,就比较容易启动,如需要延长压火时间,炉温不低于600℃之前将炉子启动一次,使料层温度升起来,然后再压火即可。

3、锅炉压火状态的再启动

启动前打开炉门,观察煤层的燃烧和床料底火情况。当煤量过多时,可扒出一部分,再加少量烟煤搅拌均匀。当上层已烧乏,炉温又较低时,可少量加烟煤,并搅拌均匀。稍停3-5分钟后,可启动引风机、一次风机、调整风量至点火风量。当床温达到800℃时,启动给煤机,逐渐加大给煤量,通过调整煤量和一次风量控制床温,随后将返料器投入。在20-30%负荷时运行一段,然后根据需要升负荷。

(9)正常停炉

先停止给煤,待床温下降至800℃以下时,依次停止二次风机、一次风机、引风机放掉返料灰即可

打赏

相关文章

循环流化床锅炉发展_循环流化床锅炉发展空间2021

什么是循环流化床锅炉?循环流化床锅炉是在流化床锅炉(又称鼓泡床或沸腾床锅炉)的基础上改进和发展起来的一种新型锅炉。循环流化床锅炉保留了流化床锅炉的全部优点,而避免和消除了流化床锅炉存在的热效率低、埋管受热面磨损严重和脱硫剂石灰石利用不充分、消耗量大和难于大…

循环流化床锅炉原理_电厂循环流化床锅炉原理

什么叫循环流化床锅炉?循环流化床锅炉技术是近十几年来迅速发展的一项高效低污染清洁燃烧枝术。国际上这项技术在电站锅炉、工业锅炉和废弃物处理利用等领域已得到广泛的商业应用,并向几十万千瓦级规模的大型循环流化床锅炉发展;国内在这方面的研究、开发和应用也逐渐兴起,…

循环流化床锅炉低氮燃烧技术_循环流化床锅炉低氮燃烧技术分析及应用

低氮燃烧器原理1、阶段燃烧器根据分级燃烧原理设计的阶段燃烧器,使燃料与空气分段混合燃烧,由于燃烧偏离理论当量比,故可降低氮的生成。2、自身再循环燃烧器一种是利用助燃空气的压头,把部分燃烧烟气吸回,进入燃烧器,与空气混合燃烧。由于烟气再循环,燃烧烟气的热容量大…

循环流化床锅炉价格_循环流化床锅炉点火步骤

130t循环流化床锅炉130t/h锅炉为中压、中型煤矿粉锅炉,露天装置,全钢悬吊式结构,锅炉前部为炉膛,四周布置水冷壁,水平烟道内布置二级对流过热器,二级对流过热器间设一面式减温器,尾部烟道交*布置两级省煤器和空气预热器,锅筒、水冷壁、过热器全部悬吊于炉顶大板梁上,省煤器、空…

循环流化床锅炉介绍_循环流化床锅炉讲解

循环流化床锅炉的基本特点是什么?循环流化床锅炉的基本特点如下:(1)低温的动力控制燃烧。其燃烧速度主要取决于化学反应速度,决定于温度水平。物理因素不再是控制燃烧的主导因素。(2)高速度、高浓度,高通量的固体物料流态循环过程。循环流化床锅炉的所有燃烧都在这两种…

循环流化床锅炉二次风_循环流化床锅炉二次风动量设计

循环流化床锅炉中的一次风、二次风的作用是什么?一次风是新风,从锅炉床下进入,将床上的燃料吹起沸腾、燃烧,二次风是烟气分流出来的热风,吹入炉膛用来调节燃烧热点的高度。锅炉的一次风,二次风有什么作用?一次风用来输送、干燥煤粉,并提供煤粉中挥发分燃烧的氧量;二次…

循环流化床锅炉事故案例_循环流化床锅炉事故预想

130t/h循环流化床锅炉长时间失水怎么处理?(事故预想,厂用电消失)厂用电消失了就是瞬间压火了,燃烧系统的操作可参考压火后的操作,应关闭所有孔门等防止锅炉急剧冷却,防止冷风串入炉内。汽水系统的操作比较重要,因为失电后长期失水,所以不能象正常压火后的操作一样。一…

循环流化床锅炉为什么_循环流化床锅炉为什么要浇筑

循环流化床锅炉是起什么作用的应用循环流化床燃烧技术的锅炉就叫循环流化床锅炉。流化床燃烧是固体燃料颗粒在炉床内经气体流化后进行燃烧的技术。当气流流过一个固体颗粒的床层时,若其流速达到使气流流阻压降等于固体颗粒层的重力时(即达到临界流化速度umf),固体床本身会变…

手机版浏览

扫一扫体验

微信公众账号

微信扫一扫加关注

返回
顶部